1,780 research outputs found

    Vitrification in a 2D Ising model with mobile bonds

    Get PDF
    A bond-disordered two-dimensional Ising model is used to simulate Kauzmann's mechanism of vitrification in liquids, by a Glauber Monte Carlo simulation. The rearrangement of configurations is achieved by allowing impurity bonds to hop to nearest neighbors at the same rate as the spins flip. For slow cooling, the theoretical minimum energy configuration is approached, characterized by an amorphous distribution of locally optimally arranged impurity bonds. Rapid cooling to low temperatures regularly finds bond configurations of higher energy, which are both a priori rare and severely restrictive to spin movement, providing a simple realization of kinetic vitrification. A supercooled liquid regime is also found, and characterized by a change in sign of the field derivative of the spin-glass susceptibility at a finite temperature.Comment: Final version, as accepted in EPJ B, reformatted to 9 pages, otherwise minor rephrasing, 10 figure

    Fermi arcs and pseudogap emerging from dimensional crossover at the Fermi surface in La2x_{2-x}Srx_xCuO4_4

    Full text link
    The doping mechanism and realistic Fermi surface (FS) evolution of La2x_{2-x}Srx_xCuO4_4 (LSCO) are modelled within an extensive ab-initio framework including advanced band-unfolding techniques. We show that ordinary Kohn-Sham DFT+U can reproduce the observed metal-insulator transition, when not restricted to the paramagnetic solution space. Arcs are self-doped by orbital charge transfer within the Cu-O planes, while the introduced Sr charge is strongly localized. Arc protection and the inadequacy of the rigid-band picture are consequences of a rapid change in orbital symmetry at the Fermi energy: the material undergoes a dimensional crossover along the Fermi surface, between the nodal (2D) and antinodal (3D) regions. In LSCO, this crossover accounts for FS arcs, the antinodal pseudogap, and insulating behavior in cc-axis conductivity, all ubiquitous phenomena in high-Tc_c cuprates. Ligand Coulomb integrals involving out-of-plane sites are principally responsible for the most striking effects observed by ARPES in LSCO.Comment: Final slightly expanded version, as accepted in EP

    Conditioning an additive functional of a markov chain to stay nonnegative. II, Hitting a high level

    Get PDF
    Let (X-t)(t >= 0) be a continuous-time irreducible Markov chain on a finite state space E, let v: E -> R \ {0}, and let (phi(t))(t >= 0) be defined by phi(t) = integral(0)(t) v(X-s) ds. We consider the case in which the process (phi(t))(t >= 0) is oscillating and that in which (phi(t))(t >= 0) has a negative drift. In each of these cases, we condition the process (X-t, phi(t))(t >= 0) on the event that (phi(t))(t >= 0) hits level y before hitting 0 and prove weak convergence of the conditioned process as y -> infinity. In addition, we show the relationship between the conditioning of the process (phi(t))(t >= 0) with a negative drift to oscillate and the conditioning of it to stay nonnegative for a long time, and the relationship between the conditioning of (phi(t))(t >= 0) with a negative drift to drift to infinity and the conditioning of it to hit large levels before hitting 0

    Conditioning an additive functional of a markov chain to stay non-negative. I, Survival for a long time

    Get PDF
    Let (X-t)(t >= 0) be a continuous-time irreducible Markov chain on a finite state space E, let v be a map v: E -> R \ {0}, and let (phi(t))(t >= 0) be an additive functional defined by phi(t) = integral(0)(t)(X-s) ds. We consider the case in which the process (phi(t))(t >= 0) is oscillating and that in which (phi(t))(t >= 0) has a negative drift. In each of these cases, we condition the process (X-t, phi(t))(t >= 0) on the event that (phi(t))(t >= 0) is nonnegative until time T and prove weak convergence of the conditioned process as T -> infinity

    n-Si/SiGe quantum cascade structures for THz emission

    Get PDF
    In this work we report on modelling the electron transport in n-Si/SiGe structures. The electronic structure is calculated within the effective-mass complex-energy framework, separately for perpendicular (Xz) and in-plane (Xxy) valleys, the degeneracy of which is lifted by strain, and additionally by size quantization. The transport is described via scattering between quantized states, using the rate equations approach and tight-binding expansion, taking the coupling with two nearest-neighbour periods. The acoustic phonon, optical phonon, alloy and interface roughness scattering are taken in the model. The calculated U/I dependence and gain profiles are presented for a couple of QC structures

    Carbide Type Influence on Tribological Properties of Hard Faced Steel Layer - Part I - Theoretical Considerations

    Get PDF
    This paper gives a theoretical review of influence of the most important alloying elements on steel, and review of the most important carbide-forming elements and states the conditions which elements should fulfill in order to be considered as carbide-forming. It primarily involves alloying elements which in the iron-carbon system can form simple, complex or special carbides, i.e. phases of interstitial and substitutive type. It also gives a review of carbide types that are formed during either production or reparatory hard facing of steel parts with different types of filler materials

    Carbide Type Influence on Tribological Properties of Hard Faced Steel Layer Part II- Experimental Results

    Get PDF
    In this paper is presented a preceding procedure that should be conducted in order to successfully regenerate damaged forging dies by the hard facing process. After the tool damage types identification, as well as their causes, we have chosen the procedure and the parameters of hard facing that we further corrected by conducting the test hard facings on models. Thus, we were able to relate the experimental results outputs with the repair technology, taking as a criterion the quality of the surface layers wear resistance such as friction coefficient and width of hard faced zone, hardness and its distribution in cross section, then microstructure of characteristic of hard faced zones, etc. This research points out significancy of tribological properties of certain types of carbides and their effects on metal matrix, in which carbides are embedded. Our tribological investigations have shown that the working life of the hard faced tool can be longer than that of the new tool

    Day-case surgery for total hip and knee replacement: how safe and effective is it?

    Get PDF
    Multimodal protocols for pain control, blood loss management and thromboprophylaxis have been shown to benefit patients by being more effective and as safe (fewer iatrogenic complications) as conventional protocols. Proper patient selection and education, multimodal protocols and a well-defined clinical pathway are all key for successful day-case arthroplasty. By potentially being more effective, cheaper than and as safe as inpatient arthroplasty, day-case arthroplasty might be beneficial for patients and healthcare systems

    Reparatory and Manufacturing Hard-Facing of Working Parts Made of Stainless Steels in Confectionary Industry

    Get PDF
    In this paper, for the sake of improving the reparatory hard-facing technology is especially analyzed reparatory hard-facing of tools for manufacturing compressed products in confectionary industry. Those products are being made of a mixture consisting of several powdery components, which is compressed under high pressure. In that way the connection between particles is realized, thus achieving certain hardness and strength of the confectionary product. The considered tool is made of high-alloyed stainless steel. The tool contains 30 identical working places. Besides the production process wear, on those tools, from time to time, appear mechanical damage on some of the products' shape punches, as cracks at the edges, where the products' final shapes are formed. Those damages are small, size wise, but they cause strong effect on the products' final shape. The aggravating circumstance is that the shape punch is extremely loaded in pressure, thus after the reparatory hard-facing, the additional heat treatment is necessary. Mechanical properties in the heat affected zone (HAZ) are being leveled by annealing and what also partially reduces the residual internal stresses
    corecore